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I Summary 
The accuracy is computed of a computational procedure for rapid estimation of frequency response 

functions from stereoscopic dynamic data. It is shown that reversal of the order of the operations of coor- 
dinate transformation and Fourier transformation, which provides a significant increase in computational 
speed. introduces error. A portion of the error can be made arbitrarily small by prescaling frequency 
data prior to coordinate transformation. The remainder of the error. which cannot be eliminated, results 
from components of motion normal to the camera focal planes. Spectral analysis of the dominant error 
term shows the presence of harmonic and cross-modulated spectral peaks caused by the nonlinearity of 
the perspective projection from spatial coordinates onto focal plane coordinates. Only when the camera 
geometry is such that all motion is parallel to both camera planes is the spatial transformation linear and 
no error introduced. 

The full 3 x 3 frequency response matrix of a vibrating structure can be estimated from a single stereo- 
scopic dynamic data set only if the driving function consists of three orthogonal mutually independent 
stochastic processes. Otherwise three independent sets of separate measurements are necessary. A least- 
squares procedure for estimation of the full frequency response matrix, column by column, for the latter 
case is developed. 

Introduction 
('lose-range photogrammetric techniques have application to  remote measurement of displacement 

in aerospace structural testing. Through the use of these techniques. the motion of multiple targets 
on a vibrating surface can be recorded by means of a stereoscopic digital camera system as a pair 
of two-dirnensional (or equivalently, a four-dimensional) sampled-data time series. Originally the four- 
dimensional coordinates of each stereoscopic data point. recorded for each target at each sampling time, 
were trarisformed into three-dimensional spatial coordinates by means of the direct linear transformation 
(DLT) algorithm (ref. 1). Cross power spectral matrices were then estimated in spatial coordinates 
through the use of averaged discrete Fourier transformation (DFT). Kroen and Tripp (ref. 2) showed 
that the operations of coordinate ii aridormation (DLT) and frequemy tranqfnrmation (DFT) may be 
coninluted hubject to certain restrictions, i.e.. limitation of displacement normal to camera focal planes. 
Thc computation time per point required for Fourier transformation and averaging is negligible compared 
with that for coordinate transformation, which is required only for each averaged data point in the 
DFT-DLT transforniational sequence. Thus, reversal of the order of operations produces a significant 
computational time savings (typically a factor of 125, ref. 2) at the cost, however, of error due to the 
iionlinearity of the direct linear transformation whenever components of motion exist normal to  either 
camera focal plane. 

This paper derives an analytical upper bound on the magnitude of the error incurrrd by the EFT-DLT 
operation sequence as a function of test geometry and perturbation amplitude. A procedure using the 
DFT-DLT transformational sequence is also developed for least-squares estimation of the general 3 x 3 
frequency response matrix. 

Symbols 

A 

Aj. 

a 

projection matrix defined in equation (20) 

j t h  row of matrix A 

damping rate; power series coefficient; general scalar element 

element of matrix A 

defined in equation (111) 

general matrix 



ratio defined in equation (107) 

power series coefficient 

defined in equation (1 12) 

niaxirniim perturbation magnitude defined in eqiiation (74) 

pcrtiirbation matrix defined in equation (24) 

matrix defincd in cqiiatiori (50) 

caIri(’ra focal length 

power scrics coc4€icieiits 

rriappiiig clcfiiiccl in equation (28) 

mapping defiricd in equat ion (2  1) 

diagonal matrix c M i r i t d  i r i  eqiiat ion (70)  

power scrics coc~fficieiit 

powcr suits defined in tqiiation ( I  18) 

d t + i r i c d  in oqiiatiort (1 13) 

(’xj)(’(*t(’d vitlii(’ 

wror tlcfiricd in cyitnt io11 ( 3 5 )  

wror d r f i r i c d  i r i  cyitat ioti (K3) 

(war d d i i i c i c l  i n  c y i i a t  ioti ((is) 
clvfiiic1cl i t t  c q i i a t  i o i i  ( 1  16) 

wror  c l c . t i i i c d  iii cqiiat i o i i  (66) 

Foilrim t r;ttisforiii;itioti o f  fiinction f ( t )  

pc’rtiirbation fiirict ion 

drivirig fiiiict i o r i  

frcyiicwc‘y rcq)oiisc’ matrix 

vector i r i  OBJ  coordiiiatos 

zth tliagoti;il cilcriitwt of  H(w) 

dcfi~ird iii cyiiat ioit  ( 157) 

j t h  coliitiiti o f  H ( w )  

d r f i I i c d  i r i  cqiiat ion (58) 

idolit ity liiitt rix 

J-l. iiit  t i g c ~  

i t i t  c~gc~t ’~  

sc-;tl(~ f;t(,t 0 1 ‘  

rot . i t  i o t i  t i i t i t  I i .i  ( I ( ~ 1 i t i c v l  i t 1  (qiiittioii ( I )  

lows I t ~ t i d  2 of ttittirix M 



row 3 of matrix M 

composite matrix defined in equation (13) 

number of averaged records 

generalized inverse of matrix A defined in equation (23) 

constant matrix 

autocovariance matrix 

cross covariance matrix 

au tospec tral matrices 

cross spectral matrices 

autopower spectrum of g ( t )  

j t h  column of S U u ( w )  

record length, seconds 

time, seconds 

constant vector 

input driving vector in object space 

= F[GU(t)] 

general vectors 

input driving vector in DFP space 

i th  element of v 

p i n t  in object space 

coordinates of point W 

focal plane image of W 

normalized magnitude of 6 W ( t )  

time-varying perturbation in object space 

= F[SW(t)] 

point in DFP space 

time-varying perturbation in DFP space 

object space coordinates 

object space coordinates of perspective center 

focal plane coordinates 

diagonal matrix defined in equation (19a) 

diagonal perturbation matrix defined in equation (19b) 

diagonal matrix defined in equation (40) 

const ants 

matrix defined in equations (162), (165), and (167) 
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least value of Yk(t) 

element of Ak 

angle between 6 W ( t )  and (k-axis 

pcrtiirbation symbol 

RMS error defined in equation (173) 

maxirriuni relative pertiirbation drfincd iii cquat ion (73) 

rclativr RMS error ciefined in eqiiat ioii (82) 

RMS error dcfined in equation (171) 

iiiaxiriiiirii ncgat ive relative perturbat ioii tlcfiricd in equation (78) 

vector cMincd in cquation (11) 

orientation angles (fig. 3) 

= Z-’Ark 

eigerivaliic of  ( A ~ A )  - 

j t h  coliirrin of  A k  

coristaiit dcfiricd in eqiiat ioii  (53) 

perspcct ivci eciit cr coordiii;ttc.s 

trarisforiiicd aiitospc~ct r;tl niatrix 

t raiisforiiic(1 cross spc’ct ral mat rix 

coiidit ioii iiiiiii1wr o f  inat rix A tlcfi~icd in cqiiatiori (69) 

(~IelIIClltS of C U , ( W )  m d  C w u ( W )  

j t h  collllrlrl of C w , ( W )  

t inic 

I T  coordinates of point W 

focal p h i o  image of Y 
frcyiicmcy. r;td/sec 

dairipcd frcqiicncy, ratd/sc.c 



Abbreviations: 

DFP dual focal plane 

DFT discrete Fourier transformation 

DLT direct linear transformation 

FP focal plane 

max 

OB J 

maximum 

object 

PC perspective center 

RMS root mean square 

Mat hemat ical notation: 
n 

I1 I I  
is defined to be 

vector or matrix norm 

- - 

A caret ( * )  over a symbol denotes an estimated value. 

Development of Projection Equations 
The three-dimensional position of a vibrating target point W is remotely sensed as a function of 

time by means of a stereoscopic camera system which employs two cameras focused on W ,  as shown 
in figure 1. The image of W ,  denoted by W', appearing in each camera focal plane is modeled as a 

.oo,.\pO~. sno:L Perspective center - 

w 
object 

Figure 1. Stereoscopic camera geometry showing images of object W on camera focal planes. 

perspective projection. That is, W projects onto the point of intersection of the camera focal plane with 
the line passing from W through the persective center, W, (the lens center, ref. 3) .  For the perspective 
projection geometry, as shown in figure 2,  define three sets of spatial coordinates: object (OBJ) coordinates 
X,, Y,, Z,.; perspective center (PC) coordinates t, q ,  < whose origin is the perspective center; and focal 
plane (FP) coordinates 2, y, z whose origin lies on the focal plane. The P C  and FP coordinate systems 
are parallel and displaced from one another by focal length c in the z-direction, but they may be rotated 
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Y 

W 

W ‘  
0 

4 

z C  Per spect ive !r center 

2 
V 

T F o c a l  plane 

X 
A 

FP coordinates OBJ  coordinates C P C  coordinates 

I7igiircx 2 Perspertivc, project ion coordiriatr systriiis showiiig pr0jcY-t iori of objcct W through pcwpc~ct ivv cmtcr  onto 
iiiiagr poiiit W’ i l l  focal plan(,. 

z C  
k A 2 

plane \ 
__- -  
------- 

Ariglvs 0 f 

J 
k X 

cxxterior orientiitiou showing rotat ion frorri coordiiiatch ( X c 3  Yc,  Z, ) iiito 
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Refer to  figure 2 for the following steps. Let the object (OBJ) coordinates of object point W be denoted 
by 

w [XC YC ZClgBJ (2) 

and let the perspective center (PC) coordinates of W be denoted by 

Let W, denote the coordinates of the perspective center in OBJ coordinates as 

The transformation from OBJ coordinates to P C  coordinates is then 

Image point T" = [[' <'IT, the point of intersection of the focal plane with the line passing from 
T through the perspective center (the origin in PC coordinates), is obtained by scaling T so that its ( 
component equals -e. Thus, 

q' 

is the perspective projection point of W in P C  coordinates. It is transformed into focal plane (FP) 
coordinates (whose axes are parallel to the P C  coordinate axes) by translation to  the focal plane. Let 
( x p , y p , c ) ~ p  denote the FP coordinates of the perspective center and let ( x , y , O ) ~ p  denote the FP 
coordinates of the perspective projection image point. Then the P C  coordinates of the perspective 
projection image point may be expressed as 

Thus the transformation from OBJ coordinates to FP coordinates, obtained from equations (6) and (7),  
is 

By means of the two cameras, a subset of the three-dimensional object space is mapped into the two 
focal plane coordinate systems, which can be viewed as a four-dimensional, dual-focal-plane (DFP) space. 
Let subscripts 1 and 2 in the sequel denote cameras 1 and 2. Let M1)2 denote the 2 x 3 matrix consisting 
of rows 1 and 2 of M, and let M3 denote the third row of M. Also let 

and 
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Apply equation (5) to cameras 1 and 2 and combine to obtain an expression for <Mas 

wherc 

M, = [ 31 (13) 

To ot)taiii t 1ic clcrricwt s of w, similarly apply equation (8) to canicrits 1 a id  2. Extracting rows I and 2 
of cyri ; t t  ioii (8) for c w l i  caiiicra aiid coriibiniiig givcs 

Now su1)stitiitc tlic ch i (wt s  of w + nw. qM + 6 s ~ .  arid W + DW into oqiiatioii (14) for the. elenleiits of 
w.  q .  aiid W, arid subtract cyiiatiori (14) froiii the result. This yit3lds 

Equatioiis (15) ant1 (16) arc corribiiicd t o  obtain 
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I 

3 

OBJ coordinates 

Figure 4. Convergent projection geometry showing projection of object perturbation 6 W onto image perturbations 6w1 
and 6wz in focal planes 1 and 2. 

where 

L O  0 0 Q J  
0 0  
651 0 :: 1 

0 0 6 Q  0 6Z = 

and 

=\E illustration of perturbations 6W and 6w appears in figure 4. 

DA from OBJ coordinates into DFP coordinates as 
The projection equation for 6w as a function of SW can be obtained from equation (18) as a mapping 

Matrix (Z + SZ)-' exists whenever no perturbation in the <-direction intersects the ( c ,  q) plane (which 
intersects the perspective center and is parallel to  the focal plane, as shown in fig. 2). Equation (21) 
defines 6w as a function of SW, since the elements of 6Z are obtained from equation (15). which is 
dependent only on SW. If matrix A has full rank (rank 2 ) .  then from equation (18) one can obtain 

where 
PA = ( ATA) AT 
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MaTrix P A ,  a generalized inverse (ref. 4) .  is the two-sided inverse of A over the rangc (colurnii space) 
of A. 

I t  is iiow shown that SZ is dependent only on 6w in equation (22)  arid that equation ( 2 2 )  therefore 
drfiiics a mapping D from DFP coordinates into OBJ coordinates which is the inverse of niapping DA. 
Define a. matrix containing the elements of 6w (with the help of eq. (9)) as 

6x1 0 1 C(6w)  = 

whicli yivlds t licl idriit ity 
nz 6w = C(hw) h<M 

i + o t i i  cqiiat ioiih ( 15). ( 2 2 )  ~ and (25) o ~ i e  obtains an expression for h qM as 

(25) 

which is solvccl for h c ~  t o  obtain 

hW = I1  [II,(hW)] (29) 



which are complex-valued vector functions of w .  Mapping D is ext'ended to complex-valued vectors by 
the relation 

(33) 
A D(u + iv) = D(u) + 2 D(v) 

If D were linear, then (since Fourier transformation is a linear operation) composition of mapping under 
D and Fourier transformation would be commutative. However, because of the nonlinearity of D, it 
follows that 1 

F PW(t) l  = F { D  [ W t ) l }  # D { F  [Sw(t)l} (34) 
I 

I If the perturbation magnitudes are small, the error 

A 
~ E(w) = D {F[bw(t)]} - F [6W(t)]  (35) 

may be acceptably small. An expression for E ( w )  is now obtained. 
It is easily shown that for nonsingular matrices Z and Z + 6Z 

(Z + 6z)-' = z-I [I - 6Z(Z + 6z)-'] 

Substitute equation (36) into equation (21) to  obtain 

Sw(t) = Z-' {A SW(t) - 6Z(t)[Z + 6Z(t)]- lA FW(t)} 

(36) 

(37) 

The Fourier transform of equation (37) is then 

F (6w)  = Z-' { AF(6W) - F[SZ(Z + 6Z)-l  A 6 W ] }  (38) 

To obtain D[F(Sw)],  substitute F (6w)  into equation (28) for 6 w  to yield 

where 
SZp[F(Sw)] = C[F(6w)] {I - MCPA C[F(Ow)])-' MCPA (40) 

and C[F(Sw)]  is obtained by substitution of F(6w)  for 6 w  into equation (24). Combine equations (38) 
and (39) to  obtain 

D[F(Gw)] = F ( 6 W )  -PA F [C.Z(Z + 6Z)-' A 6 W ]  

+ P*SZp[F(Sw)] {A F ( 6 W )  - F [6Z(Z + 6Z) 'A 6W]}  (41) 

The expression for E ( w )  is obtained from equations (35) and (41) as 

Determination of Error Bounds 
Let llvll denote the Euclidean norm of an n-element vector v. where 

(43) 
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and let IJAJI denote the norm of a rectangular matrix A. where 

It caii be shown that the value of IlAll is equal to the largest singular value of A (ref. 5). The value IIA-fl, 
whcn A-l exists, equals the inverse of the smallest singular value of A. It follows from equation (44) 
that 

IlAVll 5 IlAll ' llvll (45) 

aiid that there always c.xists a v for which equality holds in cquatioii (45). It can also bc shown (ref. 5) 
t t i a t  

IlABll 5 IlAll ' IlBll (46) 

wlicw A it i icl  B itrv cwiiforiiiablc mat riccs. The triangle incqiiality for vector norms giveii 1)y 

is t ruc itlso for iiiatrix iiorms (ref. 5) as 

(50) 

I t  is r c d i l y  sliowii that the nor111 of C[F(n'w)] is 1)ouridrd by 

(53) 
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I By the result cited above (inequality (52)), if u < 1, then {I - M ~ P A  C[F(GW)])-~ exists, and thus 
6Z~[F(6w)]  (eq. (40)) exists. It follows from equations (52) and (54) that 

I 

Take the norm of equation (40) and use inequalities (46), (51), and (55) to  give for v < 1 I 

I Inequality (56) may be rewritten as 

where 

(57) 

(58) 

Let F(6w) be scaled by factor i so that equations (53) and (57) become, respectively, 

and 

Thus K can be chosen sufficiently large to  ensure that v < 1 is satisfied and to make SZF &F(6w)] 1 1  
arbitrarily small, as was to  be shown. 

The effect of scaling F(6w) in equation (49) can now be determined. Replacement of D[F(Gw)] in 
equation (39) by K D  [&F(6w)] yields 

II [ 

Define scaled error EK(w). corresponding to  E ( w )  in equation (35). as 

E K ( u )  = K D  - F ( ~ w )  - F(6W) [k 1 
The expression for EK(w) analogous to equation (42) is written as 

Through the use of equations (60) and (63) it follows that the norm IIEdw)J] is bounded by 



The first Fourier transform term in equation (64) cannot be analytically evaluated even for simple 
tiinc fiirictioris because of the inverse factor [Z + 6Z(t)]-'. This fact prevents cktermination of a useful 
bound. However, the integral of / l E ~ ( w ) 1 1 ~  over w can be bounded analytically. as will now be shown. 
Let 

e F ( t )  = I I P ~ l l 6 z ( t ) [ Z  + GZ(t)]-'AbW(t) (65) 

and 

Froin cqiiat ions (64), (65). and (66). it is seen that 

Takc t tic. riorin of cqiiatiori (65) arid apply inequalities (45) and (46) t o  give 

where 

and 

Each i i o ~ i z ( ~ o  clciiiciit of D,( f ), wliicti is diagonal. is of the forrii 

(T = llPAll ' IlAll 

DJt) = SZ(t)[Z + hZ(t)]- '  

and that 

i t  follows froiii c y i i ; ~ t  iotis (70) i t I t (1  (76) t tiat 

14 
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where 

Therefore from equations (68), (75), and (77)’ IleF(t)ll is bounded by 

IleF(t)ll 5 0- 1 c M  - €Z c w; (t) 

IleK(t)ll I (1 + F h Z )  U + + p v ; ( t )  + Fh,OCWF(t) 

(79) 

To bound IleK(t)ll apply equations (69), (75)’ and (79) to the norm of equation (66) and simplify to 

1 1 
obt,ain 

(80) 

Square equation (80) and use the fact that IWF(t)l 5 1 to obtain 

The relative RMS error is defined as 

The inequality in equation (82) follows from Parseval’s theorem (ref. 6) and inequality (67). The integral 
in the denominator of equation (82) is evaluated by means of equation (75) to obtain 

Integration of equation (81) over t and division of the result by equation (83) yields the bound to 
CkMS as 



The terms involving h,/K in equation (84) can be made negligible by scaling F ( b w )  through suitable 
choice of factor K .  Scaling F(6w) in effect limits the distortion caused by its projection from DFP 
coordinates to OBJ coordinates via mapping D. On the other hand, the error due to distortion caused 
by projectioii of bW(t) from OBJ coordinates to DFP coordinates. represented by the remaining term in 
equation (84). is indcpcndent of scale factor K .  This portion of tlic wror is roughly proportional to the 
5 cwrripoiicnt o f  hW(t).  represontcd by the ratio t ~ / ( l  - c z ) .  

If K is chosen siifficicwtly large so that the tcrms involving k,/K arc iicgligiblc in  equation (84), then 

siiiiisoitf 

( t  ( f  < ('' 0) 1 

16 
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to give 

16a4 + 28a2w; + 3w: 
64a4 + 48a2w; + Sw; 

€RMS 5 0 (") ( 1 - €2 

For metal structures, typical values of a/wo seldom exceed 0.02, in which case inequalities (90) and (92) 
reduce to 

Numerical studies showing computed errors for damped sinusoidal perturbations compared with maximum 
errors predicted by equation (93) are presented in reference 2. 

Geometric Examples 

Figure 4 illustrates an example of typical geometry in which the 91- and y2-axes are parallel to the 
Z,-axis. and the coordinates ((1. (1) and ((2, $2) are rotated from the (X,, Y,) coordinates by angles $1 
and 42.  respectively. Let the object W be located at the intersection of the normals to each focal plane. 

Rotation matrices M1 and M2 are then 

for IC = 1,2. Matrices A and M,. defined in equations (20) and (13). are constructed from M1 and M2 
as 

(95) 
0 

0 0 
c2cos42 -c2sinq52 0 

and 

sin42 -cos&? 0 "1 sin& -cos& 

If constants are chosen such that 452 = -41, (1 = $2. e1 = c2, $1 = 452 = 7r/2, and 81 = 82 = 0, then the 
matrix product ATA is 

A ~ A  = 2c2 o s in24 o (97) [ o  0 1  

The norm llAll, equal to the square root of the largest eigenvalue of ATA (ref. 5), is then 

The norm IIPA~~, equal to the square root of the largest eigenvalue of (ATA)-'. is 

Similarly, it is determined that 
I~M,I I  = JZmax(sin 4, cos 4) 

0 = IlP~ll . IlAll = max(sec 4, csc 4)  
For this case 

Note that if SW(t) is confined to the 2,-direction then 91 = i.2 = 7r/2, and hence by equation (73) 
€ M  = 0. 
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Camera 1 Camera  2 

--t 

xC 

OBJ coord ina tes  

(A) I 
nz(z + nz)-' = (102) 

Substitiit(. quatioil  (102) into (yoation (63). riote that ri1atricc.s PA and A cancel, and takc the iiorrii to  
oht aiii 

Gl1ii i t  ion (85) siiiiplifes to 

(103) 

(104) 

(cquivslrrit to c = 1). Matrices M, and PA, necessary for dctcrriiiiiatiori of & and v via rquatioiis (58) 
iUi(1 (59) in tlic cwinputatiori of scalr factor K ,  arc now obtairicd. Rotation matrix M is thc. identity 
iiiatrix I.  siricc thc. OBJ arid FP coorc1iiiatc.s are parallel. Matrix M, is thcii 

,- - [" 0 0 1 l l  

1 0 b l  

1 0 b2 
0 1 0 

( 105) 

( 106) 



where 

Matrix ATA is 
I 
I 

Its inverse is 

( A ~ A  

The eig 

where 

X i  - X p ,  bi = 
C 

A ~ A  = 2c2 

(i = 1 , 2 )  

0 1 0  "1 
b2 + b2 

0 91 

mvalues of (ATA)-l  re obtained analytically as 

b f  + b i  
ax = 

( b l  - b 2 ) 2  c2 

2 
(bl  - b 2 ) 2 ~ 2  

bx = 

b l  + b2 
( b l  - b 2 ) 2 ~ 2  

dx = - 

The norin of llP~ll is the square root of the largest eigenvalue ul' (ATA)-'. If hl = -b2, then 

Effects of Error on Estimated Frequency Response Functions 
The effects on estimated frequency response functions caused by the computation of F[S W ( t ) ]  by the 

approximation K D  { F[Sw(t)]} can be deduced by examination of the error expression in equation (42), 
whose dominant part has been shown (see eqs. (63) and (70)) to be 

for suitably large K .  Consider the j t h  element of Dz(t) A SW(t), which is 

where Aj. is the j t h  row of A and k = 1 when j = 1 or 2 and k = 2 when j = 3 or 4. Recall from 
equation (15) that 

S < k ( t )  = Mi 6W(t) (117) 
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Expand (6<k/(k) / [1+ (bsk / fk ) ]  into a power series 

which is convergent for Ib$k(t)/&l < 1. For simplicity. suppose that SW(2) contains only two damped 
sinusoidal components at  frequencies w1 and w2. Then G ( ( t ) / q  will bc of the form 

The j t l i  corripori(wt of A S W ( t )  will be of the form 

From eqiiat ions (1 16), (1 18), ( 1 19). arid ( 120), a power seriw cxpansioli for e j  ( t  ) is oht aincd as 

where the cot#icients bn,(t) are weightrd sii~iis of products of powc~s of  r-"lt and ePfLZt .  By Irleans of 
trigo1ioriit.t ric idcrit i t  ics one obtains 

wt = CLl(*  cos qwt 
q=o 

where coefficients c ~ , , ~ ~  satisfy cmQ I = 1 and cA0 = 0, and finally 

( m  evc.ri) 

(m  odd) 

1 
2 

cosqwlt  cos rw2t = - [cos (qwl  + rwq) t - cos (qwl - rw2) t ]  (124) 

Substitute formulas (122) through (124) into oquatiori ( l a l ) ,  and sirriplify to obtain 

. 0 3  n (  ( n - m ) / 2  m/2 

[ 125) i + cos (qw1 - rw2) t ]  

20 



If the experimenter can identify true modes in D{F[w(t)]} and discard harmonic and cross-modulated 
error peaks, then error effects are relatively unimportant to modal analysis, since the fundamental 
frequencies are not shifted. However, estimated damping factors may be somewhat in error because 
of distortion in the shapes of fundamental peaks. 

Estimation of Frequency Response Matrix 
The dynamics of a three-dimensional structure, whose frequency response functions are to  be identified, 

are modeled by a three-dimensional coupled system of Nth-order linear time-invariant differential 
equations in OBJ coordinates. Let 6U(t)  be a three-element-vector driving function and let SW(t) 
be a three-element-vector response function at point SW.  Then SW(t) and SU(t)  are related by 

where PO. PI, . . . , P n  are 3 x 3 matrices of constants. Take the Fourier transform of equation (126) to 
obtain 

(127) 

By means of techniques of linear systems analysis (ref. 7), equation (127) may be solved for SW(w) as 

where H ( w ) ,  defined as the 3 x 3 frequency response matrix, is the inverse of c = O ( i w ) n P n .  It is desired 
to estimate H ( w )  from observations in dual focal plane (DFP) coordinates. 

Let t~ (eq. (73)) be sufficiently small. so that mappings D A  and D ,  defined in equations (21) and 
(28). are approximated well by 

6w(t) = U ~ [ d ^ W ( t ) j  M Z-'A 6 ' W ( t )  (129) 

and 
6W(t )  = o [ b W ( t ) ]  M P A Z  6W(t)  

Although PA is only a left inverse of A,  it follows from equation (30) that 

Z - IAPAZ Sw(t) = 6w(t) (131) 

whenever 6w(t) is contained in the column space of Z-IA, or equivalently in the range of mapping DA. 
Since all Sw(t) and Su(t) to be considered are contained in the range of DA, P A Z  and Z-IA are hereafter 
treated as two-sided inverses of each other. Therefore SU(t) and Su(t)  are related by 

Su(t) M Z-'ASU(t) (133) 

Let SU(t) be a zero-mean niultivariate stochastic process which is stationary in the wide sense (ref. 8). 
Then 6 W(t), Su(t), and 6w(t) are also zero-mean wide-sense stationary processes. The cross covariance 
matrix between SW(t) and 6U(t) is defined as 

T 
d^W(t) 6U* ( t  - T ) ]  (134) 
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arid the autocovariance matrix of 6U(t) is defined as 

RUU(T) = E SU(t)GU* [ 
where E denotes expected value. 

The cross-spectral matrix Swu(w) and the autospectral matrix SUU(W) are dcfined its 

(136) 

(137) 

(1381 
T 

S,,(W) = F E h u ( t )  hu' ( I  - T)]} { [  
S,,(W) = F { E  [ h w ( f ) h U * T ( t  - .)I> ( 13'3) 

nT 

n- l )T  
h U ( W )  = dt 

N 1 
N 

S U U ( " ' )  = - hUr l (w)  hU:L7'(w) 
71= 1 

N 
A 

S,,(W) = - 1 h'Wn(w) Sun *T (w) 
n= 1 

N 
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Smoothed estimates of S u u ( w )  and S w u ( w )  may be obtained from Suu(w) and s w u ( w )  by means of 
I transformations (140) arid (141) to yield 
I 

$ U U ( w )  P A Z  s u u ( w )  ZP; (147) 

S W U ( w )  = P A Z  swu(w)  ZP; (148) 

In principle H ( w )  can be estimated by equation (142)) provided S u u ( w )  is nonsingular, as 

I H ( w )  = S W U ( W )  9 & ( w )  (149) 

i 
I 

I If the three components of U ( t )  are mutually independent stochastic processes. then S u u ( w )  is a 
nonsingular diagonal matrix, from which H ( w )  is readily obtained via equation (149). If S u u ( w )  is 
nonsingular but nondiagonal, calculation of its inverse in equation (149) for each value of w may be 
excessively expensive computationally. If U(t) is confined to a line or to a plane in space, so that 

where U1 and U2 are fixed. then S u u ( w )  is singular, and equation (149) cannot be employed. Two 
alternative procedures for estimation of H(w) are now proposed. 

Estimation of Diagonal Frequency Response Matrix 
The observed driving function, Su(t), and the observed response function, 6w(t), in DFP coordinates 

are related through equations (126). (130), and (132). Take Fourier transforms of 6W(t) and SU(t)  in 
equations (130) and (132) and premultiply equation (128) by Z-lA to obtain 

It follows from equation (151) that S,,(w) and Suu(w) are related by 

If it is known that H ( w )  is diagonal (interactions between the X,, Y , ,  and 2, components are absent), 
then H ( w )  is easily obtained from equation (153) as follows. Let 

and 
cuu(W) = p A Z s u u ( w )  

so that equation (153) becomes 

Then hii (w)  can be estimated by using equation (156) as 

CWU(W) = H(w) Cuu(w)  

for i = I ,  2, 3, and j = I ,  2, 3, 4,  where owy,(w) and uuu (w) are elements of C w u ( w )  and Cuu(w) 

and ~ denotes values obtained from the estiniatetl matrices Swu(w)  and S u u ( w ) .  If H ( w )  is diagonal, 
then h,, ,J(w) will be independent of j .  Coriversely, if equation (157) is independent of j for arbitrary 

zL 
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C,,(w) and C,,(w). then H(u) niiist be diagonal. Thus. the diagonality of H(w) may be corifirriied by 
c*ornpiitations of h t t % J ( d )  (cq. (157)) for all 12 cornbinatioris of indices for i = 1. 2. 3 arid j = 1, 2,  3 ,  4 
and vuificatioii that htt.J ( w )  is indeptndent of 3 .  

Estimation of Nondiagonal Frequency Response Matrix 

In the grritral case where H ( w )  is a full iiondiagonal matrix. let a iitiidirectioiial driving function g ( t )  
t w  applitd in thrrc independent rii(wiircinmts in the Xc-> Yc-. ancl ZC-dirwtioiis styaratc~ly. Ono coluitiii 
of H(J) may tlioii be cstirnatcd from tach rIi('~ts~ir(~iii(~iit. in DFP coordiiiatrs. of thc obscnwi iripiit hu(f ) 
xiicl t h c i  ol).;crvcd mpoiisc bw(t). Thus apply g ( t )  in the Xrclirrct ioii. Input vector hU(t )  is t l i c t i  

1CxI)rcwcvl i t i  DFI' coordiriatcs. the. iiipiit vector is 

(158) 

( 1 G O )  

W l l C W  (for k = 1 )  

(162) 
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Use equations (161) and (163) to  estimate sgg(w) and column 2 of H ( w ) .  Finally apply g ( t )  in the 
2,-direction for IC = 3 to obtain 

m ( t )  = g ( t )  0 (:i 
and 

r 3 =  [ 
E L ? i & % a 4 3  
Sl s1 52 sz 

Use equations (161) and (163) as before to estimate sgg(w) and column 3 of H(w). 

Least-Squares Estimation of Frequency Response Matrix 

A method is developed for least-squares estimation of H(w) from equations (161) and (163). Since 
S,,(w) and S,,(w) are estimated by means of equations (145) and (146) and since measurements of 
u( t )  and w(t) are noisy, no values of igg(w) and H ( w )  exist in general which will satisfy equations (161) 
and (163) for estimated matrices Suu(w)  and S w u ( w ) .  Thus. in general for every value of isg(w) in 
equation (161) 

s u u ( w )  # sgg(,) Ak (168) 

where 

and for every H ( w )  in equation (163) 

P A Z  swu(u)  # g g g ( u ) H ( W )  rk (170) 

Optinium estimates of sgg(w)  and colunn k of H(w), denoted by h k(W). can be determined by choosing 
<qgg(w) and h . k ( w )  such that the sum of the squarcs of the Euclidian distances between corresponding 
columns is minimized in inequalities (168) and (170). Thus. from equation (168) define 

where 8,, (w) is the j t h  column of S u u ( w ) ,  and X., is the j t h  column of A k .  

solve for igg(w) to obtain 

3 

To minimize c f .  differentiate equation (171) with respect to igg(w), set the result equal to zero. and 

c&1 q a u  3 (w) 

c;-1 p.J h ? ( w )  = 

To estimate h . k ( w ) .  use equation (170) to  define 

(173) 
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where owu [w) is the j t h  ~olilniri  of P A Z  S w u ( w )  arid $ g g ( ~ )  is givcii by equation (172). Proceed as 
above to niiiiiinize f h .  arid solve for h . k ( w )  to obtaiii 2 

where 7 k 3  is thc element in the k t h  row and j t h  coliiiriri of matrix rk. 

Concluding Remarks 
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